Deconvolution is exceptionally sensitive to noise; without something discerning between newly recovered detail and artefact, the compounding effect of multiple iterations of deconvolving noise will quickly end up in a noisy, artefacting mess. The process that discerns between artefact and detail is regularization.
In general, as opposed to any other software, regularization (and deconvolution as a whole) in StarTools is extremely adept at detecting and mitigating noise and artifact propagation, thanks to signal evolution Tracking. Regularization in StarTools is wholly driven by per-pixel SNR statistics gathered as you processed the image, thereby avoiding artefact development in low SNR areas, while guaranteeing maximum detail in higher SNR areas. In fact, this ability makes applying deconvolution later in your processing a good idea, as Decon will have more "up to date" SNR statistics to work with. The closer your image is to completion, the more settled per-pixel SNR measurements will be. The latter settled SNR-measurements can than be taken into account by the Regularization algorithm to yield the most appropriate results for your image.
Throughout all this, Deconvolution still operates on the linear data, even though the end result is calculated for your stretched and (possibly) heavily processed image; eberything you did to the image is taken into account and compensated for. The mechanism responsible for this mathematical tour de force is signal evolution Tracking; decisions based on your stretched image are back propagated to the dataset when it was linear, re-calculated, then forward propagated to the heavily processed state your dataset is now in.
You can think of this procedure as undoing all changes you made since you started with linear data until the dataset is linear again, then making a modification to the dataset in its linear state, then redoing all those changes you made again - this time starting from modified linear data. It's a little bit like time travel and changing the past using knowledge about the future. This unique approach to regularization means that deconvolution in StarTools converges to an optimal solution that fits the detected noise levels - it will not - by default - destabilise with more iterations as often seen in other software.
A further innovation in StarTools' deconvolution algorithm, is its ability to tightly control destabilisation. It is possible to artificially limit StarTools' default advanced regularization stabilisation behaviour, by increasing the 'Error Diffusion' parameter from 0%. This will cause the deconvolution algorithm to cleverly exploit a quirk of the human visual system, which makes it so that noise in areas of high detail are harder to discern. By allowing the solution to destabilise only in those areas, more perceptual detail can be eeked out, without causing destabilisation to become noticeable. It should be noted that at zoom levels higher than 100%, the illusion falls apart, and the human eye will start detecting the diffused grain for what it is; destabilisation artefacts.
The AutoMask feature is able to generate a suitable mask in most cases by selecting 'Auto-generate mask'.
A regularization algorithm suppresses the creation of artefacts caused by the deconvolution of - you guessed it - noise grain.
The deconvolution algorithm in StarTools does not require pristine data and will often still successfully enhance detail in noisier datasets.
It is important to understand two things about deconvolution; Deconvolution is "an ill-posed problem", due to the presence of noise in every dataset.
Deconvolution of planetary, solar and lunar images can be achieved as well by switching 'Image Type' to 'Lunar/Planetary'.
You can convert everything you see to a format you find convenient. Give it a try!